
This article was downloaded by: [Chinese University of Hong Kong]
On: 20 August 2015, At: 05:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: 5 Howick Place, London, SW1P 1WG

Click for updates

International Journal of Geographical
Information Science
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tgis20

A function-based linear map symbol
building and rendering method using
shader language
Songshan Yueabc, Jianshun Yangabc, Min Chenabc, Guonian Luabc, A-
xing Zhuabcd & Yongning Wenabc

a State Key Laboratory Cultivation Base of Geographical
Environment Evolution (Jiangsu Province), Nanjing, China
b Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing,
China
c Key Laboratory of Virtual Geographic Environment, Nanjing
Normal University, Ministry of Education, Nanjing, China
d Department of Geography, University of Wisconsin-Madison,
Madison, WI, USA
Published online: 20 Aug 2015.

To cite this article: Songshan Yue, Jianshun Yang, Min Chen, Guonian Lu, A-xing Zhu &
Yongning Wen (2015): A function-based linear map symbol building and rendering method
using shader language, International Journal of Geographical Information Science, DOI:
10.1080/13658816.2015.1077964

To link to this article: http://dx.doi.org/10.1080/13658816.2015.1077964

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2015.1077964&domain=pdf&date_stamp=2015-08-20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2015.1077964
http://dx.doi.org/10.1080/13658816.2015.1077964

howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

A function-based linear map symbol building and rendering method
using shader language

Songshan Yuea,b,c, Jianshun Yanga,b,c, Min Chena,b,c, Guonian Lua,b,c, A-xing Zhua,b,c,d

and Yongning Wena,b,c*

aState Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu
Province), Nanjing, China; bJiangsu Center for Collaborative Innovation in Geographical

Information Resource Development and Application, Nanjing, China; cKey Laboratory of Virtual
Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, China;

dDepartment of Geography, University of Wisconsin-Madison, Madison, WI, USA

(Received 14 June 2015; accepted 27 July 2015)

Maps are widely used to visualize geo-information so that map users can develop related
understandings about the real world. Such a process for communicating information is
largely dependent on the rendering of map elements using different symbols (points and
linear and area symbols). To meet the demand of more dynamic and comprehensive
visualization in map rendering, it is essential to improve the rendering efficiency. This
paper focuses on these research topics, especially the difficulty in constructing and
drawing linear map symbols. By employing shader language, a function-based linear
symbol building and rendering method is presented in this paper. The basic idea of this
function-based method is to build a map-rendering solution that employs graphic
processing unit (GPU) acceleration technology to improve the rendering efficiency. A
‘function’ is used to represent the algorithm that draws certain simple or complex linear
map symbols. This function reflects the structure of a linear map symbol (describing the
symbol construction information) and also the rendering process of the symbolized
linear map elements (handled on a per-pixel basis by the shader program). Based on
the Open Geospatial Consortium (OGC), Styled Layer Descriptor (SLD) specifications,
four basic line types (i.e., solid lines, dashed lines, gradient color lines, and transition
lines) are implemented in the proposed method, and the implementation of line markers,
line joins and line caps is also discussed. Three experiments are conducted to demon-
strate improvements in map rendering. The results show that a variety of linear map
symbols can be constructed in a uniform way, which suggests that the proposed method
addresses the difficulty in drawing linear map symbols. With this method, the efficiency
of rendering linear map elements is substantially improved compared to using the
graphics device interface plus (GDI+) and anti-grain geometry (AGG) methods; it also
provides an applicable approach for developing map rendering systems. Using this
function-based concept, the complexity of building linear map symbols and drawing
linear map elements can be decreased.

Keywords: linear map symbol; map rendering; GPU acceleration; shader language

1. Introduction

Cartography is commonly regarded as an information communication process (Monmonier
1996; MacEachren 2004, Goodchild et al. 2007, Kraak and Ormeling 2011) that is used by
cartographers to depict information and by map users who ‘read’ the map to develop related

*Corresponding author. Email: wenyongning@njnu.edu.cn

International Journal of Geographical Information Science, 2015
http://dx.doi.org/10.1080/13658816.2015.1077964

© 2015 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

understandings. Widely approved as a useful tool to present geo-information, cartographic
symbols (or map symbols) play an important role in the information communication process
and lay the foundation for map rendering (Robinson et al. 2012, Trapp et al. 2014, Ruas
2015).

With the increasing development of data-processing and information discovery tech-
nologies, the ability to present spatial entities and geographic phenomena more dynami-
cally and efficiently is required (Graham and Shelton 2013, Bandrova et al. 2014, Chen
et al. 2015). Rendering map elements more efficiently is an important research target for
satisfying both the visualization requirements and the demand for 2D/3D integrated
information acquisition (Konecny 2011, Semmo et al. 2012, Dübel et al. 2014, Roth
2013). In the context of the vast increase in data volume and real-time data (since the Big
Data era has arrived), the problem of inefficiency has become more significant.

To improve drawing efficiency and quality, recent research has focused on data
visualization in computer graphic devices, proving that using graphic processing unit
(GPU) accelerated methods can significantly improve the rendering efficiency (Häberling
et al. 2008, Buschmann et al. 2014), especially in the case of drawing a large amount of
data. Based on GPU calculation platforms (such as OpenGL (Open Graphics Library
Shader Language, Khronos Group, Beaverton, OR, USA; www.khronos.org) or DirectX)
that take full advantage of the ability of hardware acceleration, graphics can be more
quickly presented. Shader language is designed and developed in computer visualization
studies to help users implement a variety of drawing effects which can even be supported
by hardware. Shader language, which provides a programmable interface for users to
construct and assemble graphics that can be displayed by a GPU, is widely used in 3D
drawing platforms to quickly achieve a variety of presentation effects (Haeberling 2002,
Quinn et al. 2005, Varcholik 2014).

In cartography and geographic information system (GIS), point symbols, linear sym-
bols, and area symbols are the three basic presentation methods for vector data (Kersting
and Döllner 2002, Wen et al. 2013, Wu et al. 2014). Regarding linear map elements, the
existing drawing technologies continue to face difficulties in applying complex line types.
Generally, compared to point symbols and area symbols, linear symbols are much more
complicated (Turdukulov et al. 2014, Zhang and Zhu 2015). Research on the rendering of
area symbols can be summarized as the filling of different graphic cells or icons based on the
scan line algorithm or its improved algorithms, whereas point symbols can be regarded as
the layout of different icons that have their own semantic meanings (Lane et al. 1980, Chen
et al. 2014, Bae et al. 2015). However, linear symbols are filled by a variety of graphic cells
along a particular direction, which would be inefficient if drawn using polygon rasterization
methods (Peterson 2014). The types of linear symbols are diverse; thus, it is difficult to
determine a universal processing technique to handle the variety of graphics (Zinsmaier
et al. 2012). Therefore, the rendering of linear symbols is one of the greatest difficulties that
affect the drawing efficiency of maps; the complexity of constructing linear symbols also
restricts the map design.

Focused on the difficulties in rendering linear map elements, a few studies have
analyzed line drawings using shader language, such as anti-aliased lines (Chan and
Durand 2005), Bézier curves (Rueda et al. 2008), generic paths (Kilgard and Bolz
2012), and dashed lines (Rougier 2013). These studies can be used to improve the
efficiency of drawing specific geometric lines, although problems still exist when con-
structing a variety of linear map symbols and rendering linear map elements from different
cartographic semantics. A more comprehensive method to draw variety map symbols is
needed to support the building of thematic maps.

2 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

http://www.khronos.org

Based on the above analysis regarding the difficulty of rendering and constructing linear
map symbols using shader language, this paper proposes an extendable linear symbol
drawing method. In contrast to geometric drawing in computer visualization, this paper
does not focus on detailed drawing algorithms. Instead, we attempt to build a map rendering
solution that employs GPU acceleration technology to improve the rendering efficiency. The
construction of a linear map symbol is described using a symbol-related piecewise function,
which can be implemented using shader language. The solution primarily uses GPUs to
present the linear objects that are tessellated with CPU computation; extendable functions in
shader language are used to construct the linear symbols, which is essential for decreasing
the complexity of linear map elements and improving the presentation effect.

The remainder of this article is organized as follows. Section 2 discusses the technology
of the proposed method, demonstrating that our method is suitable for linear map symbols
and can also be useful for presenting point symbols, area symbols, and 3D scenes. Section 3
introduces the basic concept of the function-based method for constructing linear map
symbols, which is extendable so that users can implement a variety of linear map symbols.
In Section 4, the methodology is presented to explain the steps of the proposed method; four
typical types of commonly used linear symbols are explained in detail, and the methods for
using these map symbols are discussed. Section 5 introduces and demonstrates the cap-
ability of the proposed linear map symbol building and rendering method in practical map
rendering applications. Finally, conclusions and a discussion are presented in Section 6.

2. Background on shader language for map rendering

In computer graphics, the ‘programmable rendering pipeline’ has been developed to
provide greater flexibility in graphics rendering, compared with the traditional ‘fixed-
function rendering pipeline’. The designation of shaders is the core of the programmable
rendering pipeline, and shaders are segments of a computer program that are compiled by
the GPU to achieve specific rendering results. Shader languages are designed and devel-
oped to help users implement a variety of shaders. By programming with a shader
language, users can handle most of the drawing effects, such as position, color, texture,
and brightness. Because shaders are processed by GPU computation, the efficiency of
rendering can be improved at the hardware level.

Generally, there are two basic shader types: vertex shaders and fragment shaders (also
called pixel shaders). Figure 1 shows the typical process of the programmable rendering
pipeline (other new shader types, such as geometry shaders and tessellation shaders, are
not discussed in this paper because they constitute auxiliary steps that are inserted into the
main process). To present spatial geometry objects on-screen, the original geometry must
be assembled by geometric primitives; vertex shaders allow the programmable vertex
processor to handle the traits of every vertex, such as their positions, textures, coordinates,
and colors. After the primitive assembly, the screen coordinates of the geometry to be
drawn are based on the projection transformation parameters via computations. Through
rasterization and interpolation, each pixel in the geometry can be assigned by a fragment
shader, which allows the programmable fragment processor to handle the traits of every
pixel, including the color, z-depth, and alpha value.

Because triangles are the basic geometric primitives that drive graphics rendering in
GPUs, all geometric elements in a map must be tessellated into triangles. Figure 2 shows
some simple implementations of the tessellation of different map symbols. The basic drawing
method for point symbols is to convert their icons into texture resources and bind the textures
with an envelope of the point symbols using the texture coordinates in two triangles. For an

International Journal of Geographical Information Science 3

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

area symbol, it should first be triangulated. Then, different textures or colors can be used to fill
the area. Linear symbols are extended in a perpendicular direction, tessellated into polygons,
and subsequently filled with different graphics according to the specific line type.

The map rendering architecture proposed in this study assigns the tessellation work to the
CPU, because the fragment processor in the GPU uses a per-pixel computation mode and
trigonometric function (sin, cos, and tan) computations in a fragment shader can be extremely
time-consuming (Drew 2008). Generally, the triangles are organized using a Vertex Buffer and
an Index Buffer, according to the 3D graphics programming interface (OpenGL and DirectX).
As shown in Figure 3(a), the Vertex Buffer contains the coordinate information of each vertex,
and the Index Buffer contains the construction information for building triangles. Once the
Vertex Buffer and Index Buffer are organized, the presentation can be processed via GPU
computation, which can be controlled by the shader language programs.

In Figure 3(b), the typical shader programs are introduced (using the OpenGL Shading
Language, GLSL). In the vertex shader, the coordinate and projection transform matrix

Figure 1. Typical process of a programmable rendering pipeline.

Figure 2. Example of the tessellation of a geometry for GPU rendering.

4 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

are the input data, and the resulting output is the render position, which contains the
coordinates of the applied transform matrix. The fragment shader assigns the color of each
pixel in the presented graphics.

3. Basic concept of the proposed method

3.1. Rendering linear map elements on a per-pixel basis

The basic concept of drawing linear map elements is regarded as the filling of repeated graphic
cells (i.e., symbols), and each pixel’s color in the presented geometry should be computed
based on the local coordinates of the single symbol. In terms of a single symbol, the color can
be selected based on a function that is dependent on the position. In Figure 4, a simple dash-
type linear symbol is employed to help explain the method for constructing a linear symbol.
This symbol is constructed in four parts: the top outline part (in gray), the bottom outline part
(in gray), the left segment part (in blue), and the right segment part (in yellow).

As shown in Figure 4(a), the variables U and V are employed to help explain the
construction information of linear map symbols. U is oriented in the direction of the
line, whereas V is perpendicular to the line. The total length of a line is TL, and the
line width is W. V is normalized in [0, 1] on the width side, and U is normalized in [0,
TL/W] on the length side. Therefore, the Vertex Buffer should be formulated as an

Figure 3. Basic work process of rendering a geometry using shader language.

International Journal of Geographical Information Science 5

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

array of (position, U, V) so that the vertex’s U and V information for a line segment can be
conveyed to the vertex shader program and the fragment shader program. The fragment
shader iterates all pixels in (0, Vmax) and (0, Umax). Moreover, to obtain the color of a pixel
from the specified symbol, (U, V) is converted to the symbol’s coordinate. The converted
coordinate u′ removes the length of the previous segments of the symbol; the resulting
algorithm is u′ = u − SL × [u/SL]. SL stands for the symbol length, and [u/SL] indicates the
number of previous segments. Here, u − SL × [u/SL] can be used to determine the length
from the start of the current segment.

Based on the computed u′ and v′ values, a function for computing the color can be
determined. In Figure 4(b), the symbol length is SL, the outline width is OW, the symbol
total width is SW, and both the left and right parts are SL/2. To construct this symbol,
function_color(u′, v′) needs to be programmed in the fragment shader, and the values of
OW, SW, and Color should be transmitted in the rendering stage. If v′ < SW − OW and v
′ > OW, the color should be selected from the left segment or the right segment. For this
condition, if u′ ≤ SL/2, the corresponding pixel color is blue; otherwise, the color is
yellow. If v′ ≥ W − SW or v′ ≤ SW, the color is the outline color, i.e., gray. This function
can be easily implemented using the fragment shader program.

Figure 4. Function-based building method for linear map symbols.

6 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

3.2. Construction of linear map symbols

To implement this function-based concept, a column array, a row array, and a color table
were designed to transmit information from the outside environment to the GPU shader
program. The column array describes a symbol’s vertical structure, and the row array
describes its horizontal structure. The color table is implemented as a two-dimensional
array which contains the color value of every column–row index.

Using the column and row arrays and the color table, the function programming can
be simplified into If-Else statements, which are easy to implement. In Figure 5, the basic
implementation method is introduced. The sample symbol in Figure 5 is the same as in
Figure 4. The width of the sample symbol is normalized to 1, and the length is 2. The
outline color is defined as color1, the left segment is color2, and the right segment is
color3. The height of the two outlines is 0.1, and the height of the middle filling region is
0.8. The width of both the left and right segments is 1.0.

Accordingly, values can be assigned to the variables that are defined by the shader
program: SymbolLength (the length of the entire symbol: 2.0), ColumnCount (the number
of columns in the symbol: 2), ColumnRowCountArray (an array indicating the number of
rows in every column: [3, 3]), CoumnWidthArray (an array indicating the width of every
column: [1.0, 1.0]), RowHeightArray (an array indicating the height of each row in every
column: [0.1, 0.8, 0.1; 0.1, 0.8, 0.1]) and CellColorTable (an array indicating the color of
every column–row cell: [color1, color2, color1; color1, color3, color1]).

In Figure 6, the basic method to determine the construction information of the linear
map symbols is introduced. The function getColumnByU() is used to determine which
column the current pixel belongs to. A For loop is programmed to iterate over every
column to determine the column index of the current pixel. Using the computed column
index, the function getRowByV() is used to compute the row index of the current pixel,
which is also programmed with a For loop to iterate over each row in the current column.

The main steps of the proposed method are presented in Figure 7. The vertex shader
handles the coordinate transformation, and the fragment shader handles the render color,

Figure 5. Construction of a sample linear map symbol.

International Journal of Geographical Information Science 7

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

which can be summarized as follows: main() to getColorByUV() to getCellColorByUV()
to getColumnByU() and getRowByV(). The entrance of the fragment shader program is
main(), and the color of each pixel is computed using getColorByUV(). In getColorByUV
(), the pixel’s color is selected from the color table using getCellColorByUV(),
getColumnByU(), and getRowByV(), which computes the column-index and row-index
in the color table.

4. Method of rendering linear map elements based on shader language

To construct different symbols, the Open Geospatial Consortium (OGC) has published the
Styled Layer Descriptor (SLD) specification, which defines rules and symbols that control
the appearance of maps (OGC 2012). Regarding linear map symbols, the SLD specifica-
tion proposes the use of Color, Width, Dash offset, Dash array, Line cap, and Line join
attributes for controlling the drawing of a linear map element. In addition, there are three
basic stroke types: solid-color, GraphicFill (stipple), and repeated linear GraphicStroke;
both the GraphicFill and GraphicStroke types can be regarded as the filling of an array of
dashed graphics. Based on these attributes, simple or complex linear map symbols can be
dynamically constructed. This specification has been widely approved as the standard for
building symbol libraries.

Based on the SLD specifications, the method presented in this paper is organized into
three stages: (1) rendering the basic line type (including the Color, Width, Dash offset, and

Figure 6. Basic methods to determine the construction information for the symbols.

8 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

Dash array attributes); (2) rendering line markers (including the GraphicFill and
GraphicStroke types); and (3) handling Line Caps and Line Joins.

4.1. Linear map symbols of typical line types

Based on the commonly used map representation platforms (e.g., Google maps, ESRI
ArcGIS, and MapServer), four types of linear map symbols are implemented in this paper:
solid lines, dashed lines, gradient color lines, and transition lines.

4.1.1. Solid lines

For linear map elements, ‘solid lines’ and ‘dashed lines’ are two frequently used ways to
distinguish different lines. Solid lines mainly repeat constantly in the along-path (hor-
izontal) direction and usually have diverse characteristics in the perpendicular (vertical)

Figure 7. Main processing steps for the function-based method.

International Journal of Geographical Information Science 9

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

direction. Thus, the size of the column array is 1, the size of the row array may be diverse
(1 to n) according to the specific line type, and the color table’s size is 1 × n.

To ensure that the designed program can be reused for multiple symbols, the column
width array, row height array, and cell color table are defined with a maximum size. In the
example shown in Figure 8, the maximum size of the column width array is 4, the row height
array maximum is 5, and the maximum of the color table is 4 × 5. Because the horizontal
filling of solid lines keeps the same, the single width can be assigned as 1 unit. For a single
solid line, which is shown in Figure 8(a), ColumnWidthArray has only one value (Width1),
RowHeightArray has only one value (Height1), and CellColorTable also has only one value
(color1). A double solid line is shown in Figure 8(b), a single solid line with an outline is
shown in Figure 8(c), and a thin-thick-thin triple solid line is shown in Figure 8(d).

4.1.2. Dashed lines

Generally, dashed lines are rendered by repeated geometrical patterns, typically using spaces
to separate the connected patterns. In this paper, lines filled by some type of pattern that is
not constant in the horizontal direction (such as the solid lines discussed in Section 4.1.1)

Figure 8. Example of solid lines: (a) single solid line, (b) double solid line, (c) single solid line
with outline, and (d) thin-thick-thin triple solid line.

10 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

are all treated as dashed lines. As shown in Figure 9(a), dash-dot lines are normal dashed
lines. Meanwhile, dashed lines with an outline (which is commonly used to represent a
railway), lines with vertical segments (which are commonly used to represent a boundary),
and right-angle curve lines (which are commonly used to represent city walls) are also
considered to be general dashed lines. Each of these types of lines is constructed with
repeated patterns, which can be described using the designed column-row-color methods.
For dash-dot line, ColumnWidthArray consists of the width of four segments, corresponding
to the long line, space, dot, and space. Moreover, RowHeightArray is constructed by four
one-dimensional arrays, which represent the height of each column. CellColorTable is built
as a 1 × 4 array to record each cell’s color.

4.1.3. Gradient color lines

Gradient color lines are commonly used to represent linear elements that are characterized
by a gradually changing attribute, such as the country coastline and traffic lines symboliz-
ing speed. To implement the rendering of gradient color lines, the CellFillType variable is

Figure 9. Example of dashed lines: (a) dash-dot line, (b) dashed line with an outline, (c) line with a
vertical segment, and (d) right angle curve line.

International Journal of Geographical Information Science 11

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

employed, which is an n × n array that stores flags for the fill type in each cell. Flag 1
indicates that the fill type is solid, and flags 2–5 indicate vertical, horizontal, rectangular,
and custom gradients. CellFillType can be extended to represent different fill types, and
the shader program is implemented to correspond with the definition of the fill types. In
Figure 10, typical gradient color lines are presented to demonstrate the building method.
There are four CellColorTable variables that are extended to describe the four vertexes of
a line segment. For vertical gradient color lines, horizontal gradient color lines, and
rectangle gradient color lines, only the first two tables (CellColorTable1 and
CellColorTable2) are used to construct the symbols. For vertical gradient color lines,
the V-direction percentage can be computed using the getRowByV() function, and the color
of the current pixel can be computed using a linear function: Color = CellColorTable1
[index] + (1 − v_Percent) × CellColorTable2[index]. For horizontal gradient color lines,
the U-direction percentage can be computed using the getColumnByU() function. The
linear function is Color = CellColorTable1[index] + (1 − u_Percent) × CellColorTable2
[index]. The color function can be customized, as in Figure 10(c):
Color12 = CellColorTable1[index] + (1 − u_Percent) × CellColorTable2[index];

Figure 10. Example of gradient color lines: (a) vertical gradient color line, (b) horizontal gradient
color line, (c) custom gradient color line, and (d) gradient color line with dashed side line.

12 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

Color34 = CellColorTable3[index] + (1 − u_Percent) × CellColorTable4[index]; and
Color = Color12 + (1 − v_Percent) × Color34.

Figure 10(d) shows a gradient color line with a dashed side line. In this case, the
symbol is constructed with two columns and two rows: ColumnWidthArray is [Width1,
Width2], RowHeightArray is [Height1, Height2; Height1, Height2], CellFillType is [0, 1;
0, 1] (0 indicates solid filling, whereas and 1 indicates gradient filling), CellColorTable1 is
[color1, color3; color2, color3], and CellColorTable2 is [NULL, Color4; NULL, color4].

The shader program is implemented using an If-Else decision structure (see the right
portion of Figure 11). The functions getColumnByU() and getRowByV() are extended to
obtain the U- and V-direction percentages (left portion of Figure 11). The program
segment (getCellColorByUV) shown in Figure 11 is supplemented with the integral shader
program shown in Figure 7.

4.1.4. Transition lines

Transition lines are commonly used to represent linear map elements (the line width
changes gradually). Generally, the width of transition lines changes along the center-
line, and the line width can be computed using a U length-based function. In
Figure 12, a simple transition line is employed to discuss the method of building
such lines. Along with the line direction, the line width gradually decreases following
a linear function. As shown in Figure 12(a), the width can be computed as an isosceles
trapezoid: W = Width2 + (Width1 − Width2) × (MaxULength − u)/MaxULength. In
this function, Width1 and Width2 are the top and end widths of the line, W is the width
at any position, MaxULength is the maximum U value, and u is the U value of the
current pixel.

To implement the rendering of such a line, a flag, i.e., IsWidthScale, is added to the
shader program to indicate whether a line is a transition line. Scale1 and Scale2 are
added to describe the scale of the line top and line end, and MaxULength is added to
convey the maximum U value to the shader program. As shown in Figure 12(b), the
width scale can be computed using the same function introduced in Figure 12(a). For a
position in such a line, the width is represented by the cb segment. The original V value
is in [0, 1]; thus, the cb segment should be expanded into [0, 1]. For any pixel that the

Figure 11. Sample shader program used to handle different fill types.

International Journal of Geographical Information Science 13

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

shader program iterates on, its V value must be expanded according to the computed
Scale value. Therefore, the area outside the simplified isosceles trapezoid can be drawn
as transparent.

In Figure 12(c), the expansion factor (EF) is introduced to explain the computation
method. The expansion factor is the reciprocal of the current position’s width scale,
and it indicates how much the original V value should be expanded. As the line width
decreases based on the centerline, there are two transparent areas outside the line,
which are presented as segments ab and cd. After expanding the original V value, the
half expansion (HE) should be removed. The final function is demonstrated in
Figure 12(c): V′(p) = V(p) × EF – HE. Based on this function, the V value of each
pixel inside the line is in [0, 1] and is <0 or >1 if it is outside the line. The final result
is presented in Figure 12(d).

Based on the above analysis, the shader program can be designed using If-Else
statements based on the IsWidthScale flag value (the sample shader program is shown in
Figure 13). The original function introduced in Figure 7, i.e., getColorByUV(), is
extended. First, the cell color is computed according to the function
getCellColorByUV() (see Figure 11); then, if the line symbol type is a transition line
(which means that IsWidthScale is equal to true), the expansion factor is computed
according to the function introduced in Figure 12(c) and an If-Else judgment is executed
to determine whether the current pixel belongs inside or outside the line. Finally, the
correct color is returned.

Figure 12. Basic method for constructing a transition line.

14 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

4.2. Line markers

Line markers are commonly used to enhance visualization and represent more useful
information in linear map elements, such as the driving direction of city roads. To
implement the rendering of line markers, MarkerNum is introduced to indicate how
many types of markers are in the line (in the example given in Figure 14, the maximum
value is defined as MAX_MARKER_NUM, 4). MarkerInterval (the spacing distance
between two markers), MarkerOffset (the distance between the line top and the first

Figure 13. Sample shader program used to handle transition lines.

Figure 14. Implementation method of line markers.

International Journal of Geographical Information Science 15

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

marker), MarkerWidth (the width of a marker), MarkerHeight (the height of a marker) are
four arrays that store the information of each marker type (as shown in Figure 14). The
marker’s graphics are described by texture, which can be loaded into the GPU and drawn
quickly. The other parameters of the sample line in Figure 14 are the same as in the
example shown in Figure 8(c) in Section 4.1.1.

In Figure 15, the extended getColorByUV() function is presented. Four textures are
defined to convey the texture of all markers to the shader program. The function
getMarkerIDByUV() is designed to obtain the index of the marker that the current pixel
belongs to. If the current pixel does not belong to any marker, −1 is returned to indicate
that the color of the current pixel should be selected from CellColorTable. In the top-right
portion of Figure 15, the getMarkerIDByUV() function is shown. The new U and V values
of the current pixel located in the marker are computed to assist in determining the color
from the marker texture. As presented in the bottom-right portion of Figure 15, using the
original texture2D function, the current pixel’s color can be computed. In the left part of
Figure 15, the getColorByUV() function is extended by adding the judgment of the marker
color before obtaining the color from CellColorTable.

4.3. Line cap and line join

To use various linear map symbols in drawing a line string, it is essential to handle line
join and line cap types, which can significantly change the shape of a line string.
According to the SLD specifications and other graphics rendering libraries (such as
Cairo, anti-grain geometry (AGG), and graphics device interface plus (GDI+)), there are
four basic line join types (i.e. none join, miter join, butt join, and round join) and four
basic line cap types (i.e. flat cap, square cap, triangle cap, and round cap). The geometric
building process of these line join types and line cap types can be implemented in the
CPU. Once the construction is completed, the results can be ‘passed’ to the GPU for
rendering. For an always-visible line string, the map actions (such as move, zoom in, and
zoom out) should not require rebuilding.

Figure 15. Extended getColorByUV() function to handle line markers.

16 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

For a line segment, the V parameter is defined between [0, 1], and the U parameter is
normalized into [0, LineLength/LineWidth]. However, for the corner of a line string, the U
and V values cannot be simply assigned as 0 or 1 or LineLength/LineWidth, because the
points of the line join are not always parallel to the original centerline. In Figure 16, four
line join types are presented to explain how to handle the U and V values in different
situations.

As with the tessellation of a line segment, line joins are converted to triangles before
‘passing’ to the GPU for rendering. Each point in the line joins is assigned U and V values
according to the coordinates. The example lines in Figure 16 are based on the angular
bisector algorithm for building line joins, and every point that is used to build triangles is
designated with a red circle.

For the none join type, there are four points: PA, PB, PC, and PD, and the final line is
constructed as PA-PD-PC and PB-PD-PC. In the PA-PD-PC case, V is equal to 1.0 and U is
equal to P1PA/PAPE for PA; V is equal to 0.0 and U is equal to P2PD/PAPE for PD; and V is
equal to 0.5 and U is equal to P1PA/PAPE for PC. In the PB-PD-PC case, PB and PC are the
same as PA-PD-PC; however, for PD, V is equal to 0.0 and U is equal to (P1PD + PDPE)/
PAPE.

For the miter join type, the construction area is PA-PD-PC and PB-PD-PC. In this case,
the U and V values are the same as the none join type, although the V value of PC is 1.0.
Because the U and V values of PA, PB, and PC are all the same, the area PA-PB-PC-PD and
the line direction can be drawn continuously.

The round join type is similar to the miter join case, although there are middle points
in the join area: PC1, PC2, and PC3. All the middle points share the same U and V values
with PA and PB (P1 PA/PAPE and 1.0). In this example, only four fans are used to divide
the round join area; more points can be used to obtain a better representation using the
same U-V assignment method.

Figure 16. Typical line join types and their simple implementations.

International Journal of Geographical Information Science 17

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

The butt join type has only three points in the join area. PA and PB have different U
values. PA is P1 PA/PAPD, whereas PB is (P1 PA+PDPE+PDPE)/PAPD. For PD, the value is
(P1 PA/PAPD, 0.0).

Regarding the handling of line caps, the method involves setting offsets into the
original U values for the start points and end points of a line, and the points in the line cap
area are U and V values appended according to the specific shape of the line cap. In
Figure 17, typical examples for the top of a line are presented. For a square line cap, the
extended points c and d are assigned U and V values of (0, 1) and (0, 0), and the original
start points a and b are assigned values of (0.5, 1) and (0.5, 0). For a triangle line cap, the
extended point c is assigned a value of (0, 0.5), and for a round line cap, three points are
added to simulate a half circle with c, d, and e having values of (0.25, 0.75), (0, 0.5), and
(0.25, 0.25) (this paper uses three points to represent round caps, although more points
can be used in practical implementation). Similarly, the end of a line can be handled in the
same way, which should assign the U value by appending the U value of the line length
and the U value of the line top.

According to the above analysis, by computing U and V values for every added point,
the line join areas and line cap areas can be filled using the same function in the shader
program.

5. Experiment and evaluation

To validate the capabilities and practicability of the proposed method, an experimental
map rendering system was designed. The system was realized using the C++ program-
ming language and implementing the shader program for this function-based concept in
OpenGL ES 2.0. The test data were downloaded from the OpenStreetMap website.

5.1. Experiment on the capability of drawing various linear map symbols

Based on the presented function-based method, this study implemented a linear map
symbol library to support the map rendering systems. Figure 18 introduces several
commonly used linear map symbols that are stored in the developed symbol library.
Typical road symbols are presented in Figure 18(a); boundary symbols (dashed lines) are
presented in Figure 18(b); and railway symbols are presented in Figure 18(c). In Figure 18
(d), gradient-color linear symbols and variable-width linear map symbols are introduced.

Figure 17. Typical line cap types and their simple implementations.

18 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

In Figure 18(a), the symbols (numbers 5–7) represent line width difference; the second
symbol and the last symbol show the line color differences. In Figure 18(b) and (c),
various line types are shown to represent different linear objects. In Figure 18(d), the
symbols (numbers 1–3) represent different line markers.

In addition, using the proposed method, complex linear map symbols can be drawn
one at a time. As shown in Figure 19, the gradient color line as well as the dashed line

Figure 18. Sample linear map symbols generated using the function-based method.

Figure 19. Rendering results of several linear symbols.

International Journal of Geographical Information Science 19

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

with gradient color can both be drawn in one operation instead of using two or more
parallel lines to simulate the gradient effects. In commonly used cartographic tools or
platforms (such as ESRI ArcGIS, MapInfo, and DotSpatial), transition lines (width
changing along the line direction) must be processed by linking segments of different
widths. With the presented method, transition lines can be drawn more smoothly. As
shown in Figures 18(d), 19(c) and 19(d), all gradient color lines and dashed lines can be
controlled by gradually changing the width.

5.2. Experiment on the rendering efficiency

Four frequently used linear symbol types (solid lines with an outline to represent roads,
dashed lines to represent railways, transition lines to represent natural rivers, and gradient
color lines to represent boundaries) are used to compare the time costs for each rendering
method. Polyline data were used in this experiment to compare the rendering time of three
graphics drawing methods: GDI+, AGG and the method proposed herein. Although using
the GPU to draw graphics has already been recognized as being significantly faster than
both GDI+ and AGG, the comparison can also explain the detailed drawing results and
effects of the proposed method.

In Figure 20, the rendering results using the function-based method with these four
different line symbols are presented. The Huanghe River (top) and the Changjiang River
(bottom) are used as the sample data in this experiment. There are 994 (Huanghe) and 989
(Changjiang) vertexes in the two sample lines.

Because the rendering efficiency of the GPU is typically determined by the frames per
second (fps) value, an experiment to test the time cost of the proposed method was
conducted in the drawing process for every frame. To simulate real map operations (such
as moving, zooming in, and zooming out), every line was rendered 1000 times. The test
environment was Windows7, Intel i5, and an Intel HD Graphics 3000 GPU.

Table 1 shows the time cost for rendering four sample line types. The experiment was
conducted 10 times to obtain the average time cost results. As shown in Table 1, the
method proposed in this paper can significantly improve the rendering efficiency. For the
rendering of simple roads, the method proposed in this paper is much faster than using the

Figure 20. Symbolization result of the sample polylines.

20 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

GDI+ or AGG methods, reducing the time cost by approximately 95% and 37% compared
with the GDI+ and AGG methods, respectively. The comparison results are very nearly
the same for the other line types. In addition, the results show that the time costs of
rendering different line types using the proposed method are relatively stable. GDI+
method and AGG method would consume more time if a symbol needs to be drawn
using two or more lines with different colors (e.g. the road symbol and boundary symbol).
And the efficiency improvement of different line types is variable because of the detailed
program implementation and the complexity of specific linear symbols.

The improvement in drawing efficiency is primarily due to hardware acceleration, and
the difference in the drawing process also leads to improved efficiency. The implementa-
tion of the GDI+ and AGG methods is based on the combined drawing method, which is
widely studied in map rendering (such as open source projects: SAGA, QGIS, and
MapWindow). For river symbols, multiple segments with various line widths should be
used to simulate the gradient effects. Unlike the GDI+ and AGG methods, the presented
function-based method conducts its drawing tasks using a single process. The color of a
pixel (inside of the polyline) is computed by a symbol-related function. River symbols can
only be drawn one at a time, and the gradient result is smoother than using multiple
segments to simulate varying widths (see in Figure 19).

5.3. Experiment on the application for map rendering

Based on the rendering architecture introduced in Section 2, a prototype map rendering
system was developed to verify the practical use of the proposed method. Figure 21 shows
several snapshots of the map rendering system.

In this map rendering system, several linear map symbols are used to represent a variety of
spatial objects: administration outlines, city roads with different ranks, and railway paths and
tunnels. The drawing of linear map elements can be controlled via the map scale. The width of
railway symbols is relatively fixed and does not change with the map scale. However, the
width of city road can change. This experiment indicates that the proposed method can render
a variety of linear map symbols and can be used to present different map scenes.

6. Conclusion and future work

The purpose of this study is to improve the efficiency of drawing various linear map
symbols and to further support the development of 2D/3D integrated map applications. By
taking advantage of the proposed function-based linear map symbol building and render-
ing method, linear map symbols can be flexibly constructed and drawn on a per-pixel
basis. With this method, different line types can be implemented, and line joins, line caps,
and line markers can also be easily handled. The shader programs in this paper are

Table 1. Time cost comparison for rendering 1000 times based on different methods (in
milliseconds).

Line type GDI+ method AGG method Proposed method

Road 10838 801 499
Railway 10816 741 511
River 6543 661 531
Boundary 22141 756 546

International Journal of Geographical Information Science 21

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

primarily focused on explanation, and this function-based method can be extended to a
variety of drawing effects.

However, because map rendering and visualization research are synthetic work, future
research is needed, especially regarding the following aspects:

(1) Anti-alias processing of lines. To achieve smooth results, anti-alias processing is
necessary. In this paper, main attention is placed on constructing and rendering
different types of linear map symbols; the implementation of anti-aliasing is not
discussed. Based on the proposed function-based method for drawing lines, the
basic concept of anti-aliasing involves using the color of a specific transparency
to fill pixels in the buffer of the line edge. This idea could be implemented in the
fragment shader program.

(2) Tessellation of line joins. Because line joins are important for the shape of a line
with a certain width, the line joins should be tessellated and constructed to form
an entire line. This paper introduces the U and V attributes for every key vertex in
a line join, although the tessellation work must be explored in depth, and a proper
tessellation method should be developed to meet the demands of drawing quality
and efficiency.

(3) User interface for building linear map symbols. Although the proposed linear map
symbol building and rendering method can be implemented to draw lines of

Figure 21. Prototype map rendering system.

22 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

different line types, significant programming work must be performed to formu-
late the shader program. To reduce the effort required for the programming work
and to make it more convenient for users to design maps, a strategy that can
support the reuse of different drawing methods that have been implemented with
the shader language should be designed and developed.

(4) Applying for building different map rendering platforms. The proposed method
can be implemented with OpenGL ES, and using this method to develop mobile
map rendering applications needs to be evaluated (e.g., the effects on battery life/
power consumption of using GPU computation versus CPU computation). The
detailed implementation of shader program can be optimized and extended to
adapter to more complex software/hardware conditions (e.g., the generalization
methods should be considered to help improve the drawing effects).

Acknowledgments
We appreciate the detailed suggestions and comments from the editor and the anonymous reviewers.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The work described in this article involves many geo-analysis models and was supported by the
following research programs: the National Basic Research Program of China (973 Program) [grant
number 2015CB954102]; the National Natural Science Foundation of China [grant number
41471317], [grant number 41371424]; the Priority Academic Program Development of Jiangsu
Higher Education Institutions.

References
Bae, W.D., et al., 2015. Optimizing map labeling of point features based on an onion peeling

approach. Journal of Spatial Information Science, 2015 (2), 3–28
Bandrova, T.L., Konecny, M., and Yotova, A., 2014. Cartography development and challenges on

the basis of big data. In: 5th international conference on cartography and GIS. Sofia: Bulgarian
Cartographic Association, 164–173.

Buschmann, S., et al., 2014. Hardware-accelerated attribute mapping for interactive visualization of
complex 3D trajectories. In: Proceedings of the 5th international conference on information
visualization theory and applications, Lisbon, Portugal, 355–363.

Chan, E. and Durand, F., 2005. Fast prefiltered lines [online]. GPU Gems 2. Indianapolis, IN:
Addison-Wesley. Available from: http://http.developer.nvidia.com/GPUGems2/gpugems2_chap
ter22.html [Accessed 13 June 2015].

Chen, M., et al., 2015. An object-oriented data model built for blind navigation in outdoor space.
Applied Geography, 60, 84–94. doi:10.1016/j.apgeog.2015.03.004

Chen, M., Wen, Y., and Yue, S., 2014. A progressive transmission strategy for GIS vector data under
the precondition of pixel losslessness. Arabian Journal of Geosciences, 8 (6), 3461–3475.
doi:10.1007/s12517-014-1467-y

Drew, Y., 2008. A closer look at GPUs. Communications of the ACM, 51 (10). doi:10.1145/
1400181.1400197

Dübel, S., et al., 2014. 2D and 3D presentation of spatial data: a systematic review [online]. In:
IEEE VIS international workshop on 3DVis (3DVis), 9 November 2014, Paris. IEEE, 11–18.

International Journal of Geographical Information Science 23

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter22.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter22.html
http://dx.doi.org/10.1016/j.apgeog.2015.03.004
http://dx.doi.org/10.1007/s12517-014-1467-y
http://dx.doi.org/10.1145/1400181.1400197
http://dx.doi.org/10.1145/1400181.1400197

Available from: http://blogs.evergreen.edu/vistas/files/2015/02/dubel-topost-2dvs3d-visieee
vis2014_submission_3.pdf [Accessed 13 June 2015].

Goodchild, M.F., Yuan, M., and Cova, T.J., 2007. Towards a general theory of geographic
representation in GIS. International Journal of Geographical Information Science, 21 (3),
239–260. doi:10.1080/13658810600965271

Graham, M. and Shelton, T., 2013. Geography and the future of big data, big data and the future
of geography. Dialogues in Human Geography, 3 (3), 255–261. doi:10.1177/
2043820613513121

Häberling, C., Bär, H., and Hurni, L., 2008. Proposed cartographic design principles for 3D maps: a
contribution to an extended cartographic theory. Cartographica: The International Journal for
Geographic Information and Geovisualization, 43 (3), 175–188. doi:10.3138/carto.43.3.175

Haeberling, C., 2002. 3D map presentation – a systematic evaluation of important graphic aspects. In:
Proceedings of ICA mountain cartography workshop “Mount Hood”, Timberline Lodge, 1–11.

Kersting, O. and Döllner, J., 2002. Interactive 3D visualization of vector data in GIS. In:
Proceedings of the 10th ACM international symposium on advances in geographic information
systems. New York: ACM, 107–112.

Kilgard, M. and Bolz, J., 2012. GPU-accelerated path rendering. ACM Transactions on Graphics
(TOG), 31 (6), 172. doi:10.1145/2366145.2366191

Konecny, M., 2011. Review: cartography: challenges and potential in the virtual geographic
environments era. Annals of GIS, 17 (3), 135–146. doi:10.1080/19475683.2011.602027

Kraak, M.J. and Ormeling, F., 2011. Cartography: visualization of spatial data. New York: Guilford
Press.

Lane, J.M., et al., 1980. Scan line methods for displaying parametrically defined surfaces.
Communications of the ACM, 23 (1), 23–34. doi:10.1145/358808.358815

MacEachren, A.M., 2004. How maps work: representation, visualization, and design. New York:
Guilford Press.

Monmonier, M., 1996. How to lie with maps. Chicago: University of Chicago Press.
OGC, 2012. Styled layer descriptor [online]. Open Geospatial Consortium Inc. Available from:

http://www.opengeospatial.org/standards/sld [Accessed 13 June 2015].
Peterson, G.N., 2014. GIS cartography: a guide to effective map design. Boca Raton: CRC Press.
Quinn, M., et al., 2005. SUMIT: A virtual reality embedded user interface prototyping toolkit

[online]. In: Proceedings of Virtual Concept 2005. Available from: http://members.bitstream.
net/~mquinn/bae_sumit.pdf [Accessed 13 June 2015].

Robinson, A.C., et al., 2012. Developing map symbol standards through an iterative collaboration
process. Environment and Planning: Part B, 39 (6), 1034. doi:10.1068/b38026

Roth, R.E., 2013. Interactive maps: what we know and what we need to know. Journal of Spatial
Information Science, 2013 (6), 59–115.

Rougier, N., 2013. Shader-based antialiased dashed stroked polylines. Journal of Computer
Graphics Techniques, 2 (2), 91–107.

Ruas, A., 2015. Models and methods to represent and explore phenomena on GIS [online]. In:
Modern trends in cartography. Springer International Publishing, 259–267. Available from:
http://link.springer.com/chapter/10.1007/978-3-319-07926-4_20 [Accessed 13 June 2015].

Rueda, A.J., De Miras, J.R., and Feito, F.R., 2008. GPU-based rendering of curved polygons
using simplicial coverings. Computers & Graphics, 32 (5), 581–588. doi:10.1016/j.
cag.2008.07.005

Semmo, A., et al., 2012. Concepts for cartography-oriented visualization of virtual 3D city models.
Photogrammetrie-Fernerkundung-Geoinformation, 2012 (4), 455–465. doi:10.1127/1432-8364/
2012/0131

Trapp, M., et al., 2014. Interactive rendering and stylization of transportation networks using distance
fields. International Journal of Geographical Information Science, 28 (10), 2030–2051.

Turdukulov, U., et al., 2014. Visual mining of moving flock patterns in large spatio-temporal data
sets using a frequent pattern approach. International Journal of Geographical Information
Science, 28 (10), 2013–2029. doi:10.1080/13658816.2014.889834

Varcholik, P., 2014. Real-time 3D rendering with DirectX and HLSL: A practical guide to graphics
programming. Indianapolis: Addison-Wesley Professional.

Wen, Y., et al., 2013. A characteristic bitmap coding method for vector elements based on self-
adaptive gridding. International Journal of Geographical Information Science, 27 (10), 1939–
1959. doi:10.1080/13658816.2013.774006

24 S. Yue et al.

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

http://blogs.evergreen.edu/vistas/files/2015/02/dubel-topost-2dvs3d-visieeevis2014_submission_3.pdf
http://blogs.evergreen.edu/vistas/files/2015/02/dubel-topost-2dvs3d-visieeevis2014_submission_3.pdf
http://dx.doi.org/10.1080/13658810600965271
http://dx.doi.org/10.1177/2043820613513121
http://dx.doi.org/10.1177/2043820613513121
http://dx.doi.org/10.3138/carto.43.3.175
http://dx.doi.org/10.1145/2366145.2366191
http://dx.doi.org/10.1080/19475683.2011.602027
http://dx.doi.org/10.1145/358808.358815
http://www.opengeospatial.org/standards/sld
http://members.bitstream.net/%7Emquinn/bae_sumit.pdf
http://members.bitstream.net/%7Emquinn/bae_sumit.pdf
http://dx.doi.org/10.1068/b38026
http://link.springer.com/chapter/10.1007/978-3-319-07926-4_20
http://dx.doi.org/10.1016/j.cag.2008.07.005
http://dx.doi.org/10.1016/j.cag.2008.07.005
http://dx.doi.org/10.1127/1432-8364/2012/0131
http://dx.doi.org/10.1127/1432-8364/2012/0131
http://dx.doi.org/10.1080/13658816.2014.889834
http://dx.doi.org/10.1080/13658816.2013.774006

Wu, C., et al., 2014. Research on national 1:50000 topographic cartography data organization.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 83–89.
doi:10.5194/isprsannals-II-4-83-2014

Zhang, J. and Zhu, Y., 2015. A method based on graphic entity for visualizing complex map
symbols on the web. Cartography and Geographic Information Science, 42 (1), 44–53.
doi:10.1080/15230406.2014.981586

Zinsmaier, M., et al., 2012. Interactive level-of-detail rendering of large graphs. IEEE Transactions
on Visualization and Computer Graphics, 18 (12), 2486–2495. doi:10.1109/TVCG.2012.238

International Journal of Geographical Information Science 25

D
ow

nl
oa

de
d

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f
H

on
g

K
on

g]
 a

t 0
5:

39
 2

0
A

ug
us

t 2
01

5

http://dx.doi.org/10.5194/isprsannals-II-4-83-2014
http://dx.doi.org/10.1080/15230406.2014.981586
http://dx.doi.org/10.1109/TVCG.2012.238

	Abstract
	1. Introduction
	2. Background on shader language for map rendering
	3. Basic concept of the proposed method
	3.1. Rendering linear map elements on a per-pixel basis
	3.2. Construction of linear map symbols

	4. Method of rendering linear map elements based on shader language
	4.1. Linear map symbols of typical line types
	4.1.1. Solid lines
	4.1.2. Dashed lines
	4.1.3. Gradient color lines
	4.1.4. Transition lines

	4.2. Line markers
	4.3. Line cap and line join

	5. Experiment and evaluation
	5.1. Experiment on the capability of drawing various linear map symbols
	5.2. Experiment on the rendering efficiency
	5.3. Experiment on the application for map rendering

	6. Conclusion and future work
	Acknowledgments
	Disclosure statement
	Funding
	References

